Maximal feedback linearization with internal stability: classification of 2-DOF underactuated mechanical systems

Divine Maalouf, Claude Moog, Yannick Aoustin and Shunjie Li

October 24, 2012
The under actuation in robotics

A humanoid robot could be in under actuated phase because the length of its feet is limited.

\[\tau_{ZMP} = Mg(x - p_x) - m\ddot{z}_c = 0 \]
Zeros dynamics equations: A link with the linear case

- The unit step response of the linear system

\[
\frac{Y(s)}{U(s)} = \frac{s - 2}{s - 1}
\]

\[
\frac{s - 2}{s(s - 1)} = \frac{s - 1}{s(s - 1)} - \frac{1}{s(s - 1)} = \frac{s - 1}{s(s - 1)} + \frac{1}{s} - \frac{1}{s - 1}
\]

→ in temporal

\[
y(t) = 2 - e^t
\]

- The unit step response of the corrected linear system

\[
\frac{s - 2}{s} = 1 - \frac{2}{s}
\]

→ in temporal

\[
y(t) = \delta(t) - 2
\]
The critical choice of the output

With the choice of \(\frac{Y(s)}{U(s)} = \frac{s - 2}{s - 1} \) we have:

- a zero in the half right part of the complex plane \(\rightarrow \) system with non-minimum phase
- a pole in the half left part of the complex plane \(\rightarrow \) unstable system
- Possibility of the presence of singularities
Two-degree-of-freedom spring-mass system:

\[m_2 \]
\[k \]
\[m_1 \]
\[F \]
\[q_2(t) \]
\[q_1(t) \]

The expressions for the kinetic energy \(T \) and the potential energy \(V \) are the following:

\[
2T = m_1 \dot{q}_1^2 + m_2 (\dot{q}_1 - \dot{q}_2)^2, \quad 2V = kq_2^2. \tag{5}
\]
This two-degree-of-freedom translational mechanical system is a differentially flat system since the output $y = q_1 - q_2$ has a relative degree 4 and

- $y = q_1 - q_2$
- $\dot{y} = \dot{q}_1 - \dot{q}_2$
- $\ddot{y} = -k(\frac{2}{m_1} + \frac{1}{m_2})q_2$
- $y^{(3)} = -k(\frac{2}{m_1} + \frac{1}{m_2})\dot{q}_2$

define the linearizing coordinates. The state feedback is computed when solving the following equation in F

$$v = -k\left(\frac{2}{m_1} + \frac{1}{m_2}\right)\left[k\left(\frac{1}{m_1} + \frac{1}{m_2}\right)q_2 + \frac{F}{m_1}\right]$$

which yields $y^{(4)} = v$.

The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output

The flat output 2/2
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output
The flat output

Relative degree: Consider a single-input nonlinear system

\[\Sigma: \begin{cases} \dot{x} &= f(x) + g(x)u \\ y &= h(x) \end{cases} \]

where the state \(x \in \mathbb{R}^n \). The relative degree of \(y = h(x) \)
equals \(r \), then locally there exists a regular static state feedback
\(u = \alpha(x) + \beta(x)v \)
and a state transformation
\((z, w) = \phi(x) \) such that system \(\Sigma \) reads,

\[\begin{align*}
\dot{z}_1 &= z_2 \\
\dot{z}_2 &= z_3 \\
& \quad \vdots \\
\dot{z}_r &= v \\
\dot{w} &= \eta(z, w) \\
y &= z_1.
\end{align*} \]
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output 1/2
The flat output 2/2

Generalities 1/7

Generalities 2/7

Generalities 3/7

Generalities 4/7

Generalities 5/7

Generalities 6/7

Generalities 7/7

Calculus of \mathcal{H}_2
Calculus of \mathcal{H}_3 1/2
Calculus of \mathcal{H}_3 2/2
Class 0 systems 1/3
Class 0 systems 2/3
Class 0 systems 3/3
Class 1 systems 1/2
Class 1 systems 2/2
Class 2 systems 1/2
Class 2 systems 2/2

Conclusion

subspace $\{\mathcal{H}_k\}$ of \mathcal{E}

$\mathcal{H}_0 = \text{span}_K \{dx, du\}$
$\mathcal{H}_{k+1} = \{\omega \in \mathcal{H}_k \mid \dot{\omega} \in \mathcal{H}_k\}, \ k \geq 1. \quad (9)$

$\omega = a \, dx + \sum_{k \geq 0} b_k \, du^{(k)} \quad (10)$

$\dot{\omega} = (\dot{a} \, dx + a \, \dot{d}x) + \sum_{k \geq 0} (\dot{b}_k \, du^{(k)} + b_k \, du^{(k+1)}) \quad (11)$

\mathcal{H}_k: the set of all one-forms with relative degree at least k. $\mathcal{H}_1 = \text{span}_K \{dx\}$; $\mathcal{H}_2 = \text{span}_K \{g\}^\perp$.
The zero dynamics of system Σ, given by (7):

\[\dot{w} = \eta(0, w) \]

internal dynamics consistent with the constraint \(y(t) \equiv 0 \).

\[y = q_i - q_i^d = 0, \quad \dot{y} = \dot{q}_i - \dot{q}_i^d = 0 \]
\[\ddot{y} = \ddot{q}_i - \ddot{q}_i^d = 0 \]

from the angular momentum theorem → \(f(\theta, \dot{\theta}, \ddot{\theta}) = 0 \),
Generalities 4/7

The under actuation in robotics
Zero’s dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output 1/2
The flat output 2/2
Generalities 1/7
Generalities 2/7
Generalities 3/7
Generalities 4/7
Generalities 5/7
Generalities 6/7
Generalities 7/7
Calculus of \(\mathcal{H}_2 \)
Calculus of \(\mathcal{H}_3 \) 1/2
Calculus of \(\mathcal{H}_3 \) 2/2
Class 0 systems 1/3
Class 0 systems 2/3
Class 0 systems 3/3
Class 1 systems 1/2
Class 1 systems 2/2
Class 2 systems 1/2
Class 2 systems 2/2
Class 2 systems 3/2
Conclusion

Definition 0.1 The Lagrangian \(\mathcal{L} \) is defined as
\[
\mathcal{L}(q, \dot{q}) := T(q, \dot{q}) - V(q),
\]
where \(T \) denotes the kinetic energy and \(V \) is the potential energy. Lagrange’s equations of motion for a mechanical system are:

\[
\frac{d}{dt} \frac{\partial}{\partial \dot{q}_i} \mathcal{L}(q, \dot{q}) - \frac{\partial}{\partial q_i} \mathcal{L}(q, \dot{q}) = \gamma_i
\]

(12)

\(\gamma_i \) is the external generalized force at the \(i \)-th joint.
The under actuation in robotics
Zeros dynamics
Equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output
The flat output
Generalities
Calculus of H_2
Class 0 systems
Class 1 systems
Class 2 systems

Definition 0.2 q_i is said to be **cyclic** with respect to a dynamical system, if the following holds [Arnold97]:

$$\frac{\partial \mathcal{L}(q, \dot{q}, t)}{\partial q_i} = 0$$

where $\mathcal{L}(q, \dot{q})$ is the Lagrangian of the system.

Remark: Theorem d’Emi Noether (1918): Symmetry of rotation \Rightarrow conservative angular momentum. Direct joint between law of conservation of Euler-Lagrange equations and symmetries.
Property 0.3 The kinetic energy of a mechanical system is invariant under a translation or a rotation of the world frame, see [Spong89]. → for the equations of motion of a two-degrees of freedom mechanical system, with a position variable or an orientation variable with respect to the world frame and a joint variable as components of the generalized vector, the inertia matrix does not depend on the position variable or the angular orientation with respect to the world frame.

\[
\mathcal{T} = \frac{1}{2} \dot{\mathbf{q}}^T \mathbf{D} \dot{\mathbf{q}}.
\]
Generalized conjugate momenta: \(\frac{\partial}{\partial \dot{q}_i} \mathcal{L}(q, \dot{q}) \) for \(i \in [1, \cdots, N] \), where \(N \) is the number of generalized coordinates.

Property 0.4 The generalized conjugate momenta are equal to \(\frac{\partial}{\partial \dot{q}_i} \mathcal{L}(q, \dot{q}) = d_i(q) \dot{q} \) where \(d_i \) is the \(i-th \) row of the inertia matrix \(D \).

From the definition of the generalized conjugate momenta, the Lagrange’s equation (12) can be rewritten as:

\[
\frac{d}{dt} (d_i(q) \dot{q}) = \frac{\partial}{\partial q_i} \mathcal{L}(q, \dot{q}) + \gamma_i
\]

(13)
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output

Theorem 0.5

\[\mathcal{H}_2 = \text{span}_K \{ g \} = \text{span}_K \{ dq_1, dq_2, d(d_i(q)\dot{q}) \} \]

where \(i \) is the index of the unactuated variable. For a two-degree of freedom underactuated mechanical system, if \(q_1 \) is the actuated variable (respectively \(q_2 \)), the generalized conjugate momentum

\[\frac{\partial}{\partial \dot{q}_2} \mathcal{L}(q, \dot{q}) = d_2(q)\dot{q} \] (respectively

\[\frac{\partial}{\partial \dot{q}_1} \mathcal{L}(q, \dot{q}) = d_1(q)\dot{q} \] is a function with relative degree at least 2; thus its differential belongs to \(\mathcal{H}_2 \).
Theorem 0.6 For 2-Dof mechanical systems \mathcal{H}_3 is at least always partially integrable such that:

$$dp(q) = dq_1 + \frac{d_{i2}}{d_{i1}} dq_2 \in \mathcal{H}_3.$$

Consider $d_i(q_2) dq = d_{i1}(q_2) dq_1 + d_{i2}(q_2) dq_2$ i denotes again the index of the unactuated variable.

$$dp = dq_1 + \frac{d_{i2}(q_2)}{d_{i1}(q_2)} dq_2.$$

is an exact one-form. Consequently $dp \in \mathcal{H}_3$ and

$$\mathcal{H}_3 = \text{span}_K \{ \omega, dp \}$$

for some ω which may be exact or not.
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output 1/2
The flat output 2/2
Generalities 1/7
Generalities 2/7
Generalities 3/7
Generalities 4/7
Generalities 5/7
Generalities 6/7
Generalities 7/7
Calculus of \mathcal{H}_2
Calculus of \mathcal{H}_3 1/2
Calculus of \mathcal{H}_3 2/2
Class 0 systems 1/3
Class 0 systems 2/3
Class 0 systems 3/3
Class 1 systems 1/2
Class 1 systems 2/2
Class 2 systems 1/2
Class 2 systems 2/2
Class 2 systems 1/2
Conclusion

Calculus of \mathcal{H}_3 2/2

Calculation of ω

- q_1 is the unactuated variable.

\[\mathcal{H}_3 = \text{span}_K \{d\rho, d(d_{11}\dot{p})\}. \] (17)

- q_2 is the unactuated variable.

Theorem 0.7 For a two-degree of freedom underactuated mechanical system, \mathcal{H}_3 is fully integrable if and only if

\[|D| = \rho d_{22}, \] where ρ is a non zero real number. Moreover the set \mathcal{H}_3 is such that:

\[\mathcal{H}_3 = \text{span}_K \{d\rho, d \left(\frac{d_{21}^2}{d_{22}} \dot{p} \right) \}. \] (18)
Definition 0.8 A two-degree-of-freedom mechanical system is said to be of Class 0 if it is accessible and \mathcal{H}_4 is integrable.

Exemple: Flywheel Pendulum

q_2 is cyclic. The inertia wheel pendulum is a differentially flat system since the output $y = p$ has relative degree 4 and
The under actuation in robotics
Zeros dynamics equations: A link
with the linear case
The critical choice of the output
Another linear system with a flat output 1/2
The flat output 2/2
Generalities 1/7
Generalities 2/7
Generalities 3/7
Generalities 4/7
Generalities 5/7
Generalities 6/7
Generalities 7/7
Calculus of \mathcal{H}_2
Calculus of \mathcal{H}_3 1/2
Calculus of \mathcal{H}_3 2/2
Class 0 systems 1/3
Class 0 systems 2/3
Class 0 systems 3/3
Class 1 systems 1/2
Class 1 systems 2/2
Class 2 systems 1/2
Class 2 systems 2/2
Class 2 systems 1/2
Conclusion

Define the linearizing coordinates. The state feedback is computed when solving the following equation in Γ

$$v = \frac{b}{a_{11} + a_{22}} \ddot{q}_1 \sin q_1 + \frac{b}{a_{11} + a_{22}} \left[\frac{b}{a_{11}} \sin q_1 + \frac{\Gamma}{a_{11}} \right] \cos q_1$$

which yields $y^{(4)} = v$.

\[
\begin{align*}
y &= q_1 + \frac{a_{22}}{a_{11} + a_{22}} q_2 \\
\dot{y} &= \dot{q}_1 + \frac{a_{22}}{a_{11} + a_{22}} \dot{q}_2 \\
\ddot{y} &= -\frac{b}{a_{11} + a_{22}} \sin q_1 \\
y^{(3)} &= -\frac{b}{a_{11} + a_{22}} \dot{q}_1 \cos q_1
\end{align*}
\]
Lemma 0.9 Consider a 2-DOF under actuated mechanical system. The system is a class 0 system if its inertia matrix does not depend on the configuration variable.

Let q_i be the unactuated variable $\Rightarrow d_i(q)\dot{q} = \frac{\partial}{\partial \dot{q}_i} L(q, \dot{q})$ has a relative degree 2 at least. If the variable of configuration is cyclic then $d_i(q)\dot{q} = d_i\dot{q}$. From the Lagrange’s equations (12):

$$
\frac{d}{dt} d_i\dot{q} = \frac{\partial}{\partial q_i} (T(\dot{q}) - V(q)) \\
= \frac{\partial}{\partial q_i} (\frac{1}{2} \dot{q}^t D \dot{q} - V(q)) \\
= -\frac{\partial}{\partial q_i} V(q)
$$

Then $d_i\dot{q}$ has a relative degree 3 at least \Rightarrow the output $y = d_i\dot{q}$ has a relative degree 4.
Definition 0.10 A two-degree-of-freedom mechanical system is said to be of Class 1 if it is accessible, \mathcal{H}_4 is not integrable and \mathcal{H}_3 is fully integrable.

Exemple: Translational inverted pendulum
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output 1/2
The flat output 2/2

Generalities 1/7
Generalities 2/7
Generalities 3/7
Generalities 4/7
Generalities 5/7
Generalities 6/7
Generalities 7/7
Calculation of \mathcal{H}_2
Calculation of \mathcal{H}_3 1/2
Calculation of \mathcal{H}_3 2/2
Class 0 systems 1/3
Class 0 systems 2/3
Class 0 systems 3/3
Class 1 systems 1/2

Class 1 systems 2/2

\begin{align}
2\mathcal{T} &= I\dot{\theta}^2 + m_1l_1 + m_2((\dot{x} - l\dot{\theta})^2 + x^2\dot{\theta}^2), \\
\mathcal{V} &= m_1gl_1 \cos \theta + m_2g(l \cos \theta + x \sin \theta).
\end{align}

\begin{align}
dp &= \frac{\sigma dt}{I + m_2(l^2 + x^2)} \\
&= d\theta - \frac{m_2l}{I + m_2(l^2 + x^2)} dx,
\end{align}

\begin{equation}
\mathcal{H}_3 = \text{span}_K \{d\sigma, dp\},
\end{equation}

Any Class 1 system can be maximally linearized with internal stability. The adequate output: in the form of a linear combination of the angular momentum σ and its "integral" p.

Class 1 systems 2/2
Class 2 systems 1/2
Class 2 systems 2/2
Class 2 systems 1/2.

Conclusion

Journées Nationales d'Automatique et de Robotique

Yannick Aoustin – 21 / 25
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output
The flat output

Definition 0.11 A two-degree-of-freedom mechanical system is said to be of Class 2 if it is accessible, \mathcal{H}_4 is not integrable and the derived flag of \mathcal{H}_3 has dimension 1.

Exemple: Translational inverted pendulum
Class 2 systems 2/2

The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output 1/2
The flat output 2/2

Generalities 1/7
Generalities 2/7
Generalities 3/7
Generalities 4/7
Generalities 5/7
Generalities 6/7
Generalities 7/7
Calculus of H_2 1/2
Calculus of H_3 1/2
Calculus of H_3 2/2
Class 0 systems 1/3
Class 0 systems 2/3
Class 0 systems 3/3
Class 1 systems 1/2
Class 1 systems 2/2
Class 2 systems 1/2
Class 2 systems 2/2

\[
2\mathcal{T} = (M + m)\ddot{e}^2 + 2ml\dot{e}\dot{\theta} \cos \theta + J\dot{\theta}^2, \\
\mathcal{V} = mg(h + l \cos \theta).
\]

(24)

\[
\mathcal{H}_2 = \text{span}_K \{g\}^\perp \\
= \text{span}_K \{de, d\theta, d(-ml \cos \theta \dot{e} + J\dot{\theta})\}
\]

(25)

\[-ml \cos \theta \dot{e} + J\dot{\theta}: \text{ the generalized conjugate momentum } \frac{\partial L}{\partial \dot{\theta}}.
\]

\[
\mathcal{H}_3 = \text{span}_K \{\omega_1, dp_1\},
\]

(26)

where ω_1 is a differential one-form and

\[
dp_1 = \frac{1}{ml \cos \theta} \frac{\partial L}{\partial \theta} = (-de + \frac{J}{mgl \cos \theta} d\theta)
\]

\mathcal{H}_3 is not fully integrable and moreover, its derived flag $\mathcal{H}_3^{(1)} = \text{span}_K \{dp_1\}$. One thus concludes that the Cart-pole system is Class 2 system.
Class 2 systems 1/2

The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output 1/2

<table>
<thead>
<tr>
<th>\mathcal{H}_2</th>
<th>always integrable: $\mathcal{H}_2 = \text{span}_K {dq_1, dq_2, d(d_i(q)\dot{q})}$ $\mathcal{H}_2 = \text{span}_K {dq_1, dq_2, dp}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{H}_3</td>
<td>q_1 not actuated always integrable: $\mathcal{H}_3 = \text{span}K {dp, d(d{11}\dot{p})}$ $\mathcal{H}_3 = \text{span}K {dp, d(\dot{p} \frac{d^2}{d{22}})}$</td>
</tr>
<tr>
<td>\mathcal{H}_4</td>
<td>sufficient condition: q_2 is cyclic $\mathcal{H}_4 = \text{span}_K {dp}$</td>
</tr>
</tbody>
</table>
The under actuation in robotics
Zeros dynamics equations: A link with the linear case
The critical choice of the output
Another linear system with a flat output
The flat output
Generalities
Calculus of H_2
Calculus of H_3
Class 0 systems
Class 0 systems
Class 0 systems
Class 1 systems
Class 1 systems
Class 2 systems
Class 2 systems

Conclusion

- To state and to solve the maximal feedback linearization problem with internal stability for a general class of two-degree-of-freedom mechanical systems.
- An efficient way to stabilize non flat systems.
- The generalized conjugate momenta appear to be one key of the problem.
- We can tackle more complex mechanical devices (Paraglider, Humanoid robots with Kajita’s model of the inverted pendulum).